##
Sheaves on Sites

Posted by Charles Siegel under

Algebraic Geometry
[2] Comments
In this post, I defined Grothendieck Topologies and gave some examples. Look there and in related links for more on Grothendieck topologies. We’re going to move on to Sheaves today. This is going to be a minipost, because this does deserve it’s own posting and it’s going to take me some time to work out the next in this series.

So we should start out by talking about what a sheaf is on a topological space. Let be a topological space, and recall that is the category of open sets on . Then a presheaf of objects of a category is a contravariant functor . For simplicity, we will talk about presheaves of sets and of abelian groups, rather than the full generality.

A sheaf, then, is a presheaf with additional structure. Specifically we require that a sheaf satisfy that if is any open set and is any open cover of , and is used to denote , then if given such that for all , then there exists a unique such that for all . That is, there exist unique gluings of local sections.

This is actually equivalent to the statement that, given an open set and an open cover , then the sequence is exact. By that we mean that the first map has image the equalizer of the pair of maps to .

In light of this, given a site , a sheaf on is a contravariant functor on such that for every covering the diagram is exact.

Now, given a scheme over a scheme , as we move through the various sites mentioned previously, it gets harder and harder to be a sheaf. The toughest topology for a functor to be a sheaf on is the fppf topology, which makes the fact that the functor is an fppf sheaf. This functor is called the functor of points of over .

Next in this series will be descent theory, I’m attempting to put it all together (which seems somehow fitting) and I’ll continue this line of thought when I am capable of doing so.

### Like this:

Like Loading...

*Related*

February 5, 2010 at 10:27 pm

[...] first, what’s a sheaf? I’ve talked about this before, but let’s review quickly. Take a category, any category, and give it a topology, pick [...]

October 17, 2010 at 4:33 pm

[...] we can try to generalize sheaves on sites. Again, this has been done in two other places (here and here), so we’ll hit the [...]