### About this blog

Rigorous trivialities is a web log about mathematics, but especially geometry, broadly construed. Contributors will be Charles Siegel, Jim Stankewicz and occasionally Matt Deland. Charles specializes in algebraic geometry, topology and mathematical physics. Jim specializes in arithmetic algebraic geometry. Matt has transitioned from algebraic geometry to work in industry.

Header is taken from the larger work by fdecomite under the creative commons license.

### Categories

- Abelian Varieties AG From the Beginning Algebraic Geometry Algebraic Topology Big Theorems Cohomology Combinatorics Complex Analysis Computational Methods Conferences Cranks Curves Deformation Theory Differential Geometry Enumerative Geometry Examples Group Theory Hilbert Scheme Hodge Theory ICTP Summer School Intersection Theory Knot Theory MaBloWriMo Math Culture Mathematical Physics Moduli of Curves Talks Toric Geometry Uncategorized Vector Bundles
October 2021 S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ### Recent Comments

Simon on Monodromy Representations Bertini on Bertini’s Theorem Anonymous on Dual Curves lap top on Low Genus Moduli of Curve… ฟุตบอลสเปน on Elliptic Curves and Jacob… ### Links

### Math Blogs

- 0xDE
- 360
- A Mind for Madness
- A Neighborhood of Infinity
- A Singular Contiguity
- Aline’s Weblog
- Arcadian Functor
- Ars Mathematica
- Blog of a Math Teacher
- Casting out Nines
- Combinatorics and More
- Concrete Nonsense
- Disquisitiones Mathematicae
- Dung Hoang Nguyen’s Weblog
- E. Kowalski’s Blog
- eon
- EvolutionBlog
- Geometric Algebra
- God Plays Dice
- Good Math, Bad Math
- gyre & gimble
- Halfway There
- Hydrobates
- in Theory
- Intrinsically Knotted
- Let’s Play Math
- Low Dimensional Topology
- Mathematics and Physics
- Mathematics Prelims
- Mathematics under the Microscope
- Mathematics Weblog
- Mathemusicality
- Michi’s Blog
- neverending books
- Noncommutative Geometry
- Polymathematics
- Portrait of the Mathematician
- Quomodocumque
- Reasonable Deviations
- Secret Blogging Seminar
- Sketches of Topology
- Tangled Web
- tcs math
- The Accidental Mathematician
- The Everything Seminar
- The n-Category Cafe
- The Narrow Road
- The Real Sqrt
- The Rising Sea
- The Unapologetic Mathematician
- Theoretical Atlas
- Tim Gowers’s Weblog
- Topological Musings
- What’s New

### Archives

- February 2015
- January 2015
- December 2014
- November 2014
- September 2014
- December 2013
- February 2013
- December 2012
- November 2012
- October 2012
- April 2012
- April 2011
- November 2010
- October 2010
- August 2010
- July 2010
- June 2010
- April 2010
- March 2010
- February 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007

### Tags

### Top Posts & Pages

- The Veronese Embedding
- Monodromy Representations
- Normalization and Normal Varieties
- Chern Character and K-Theory
- AG from the Beginning
- Morphisms of Sheaves
- Weil Divisors, Cartier Divisors and more Line Bundles.
- The Twenty-Seven Lines on the Cubic Surface
- The Chow Ring and Chern Classes
- The Grothendieck Group of Coherent Sheaves on a Variety

# Category Archives: Cohomology

## Prym Varieties

Let be an unramified double cover, where is geneus . Then has genus by the Riemann-Hurwitz formula. Now, encodes lots of information about the geometry of , especially with the additional data of the theta divisor. It turns out that … Continue reading

## The Stanley-Reisner Ring

Today, we’re going to do something completely different, but which most of my peers seem not to have seen, but is a very cool application of algebraic geometry.

## Monodromy Representations

A departure from directly working with varieties, we’re going to do something that’s strictly topological (at first glance) but which really has deep and important connections with Hodge theory. We’re going to talk about monodromy and monodromy representations. Let be … Continue reading

## The Hodge Theorem

Previously, we talked a bit about the category of Hodge structures, and did some basic constructions. However, I’d claimed that this was algebraic geometry (at least, in the categories on the post) so today, we’ll talk about a LOT of … Continue reading

Posted in Algebraic Geometry, Cohomology, Hodge Theory
2 Comments

## Hodge Structures

Back to blogging for a bit, though likely infrequently. Doing a new series that might count as AG from the beginning, so I’ll put it up there once I’ve got a couple done. We’re going to start doing some Hodge … Continue reading

## The Grothendieck-Riemann-Roch Theorem, a proof-sketch

By this time I’m sure everyone whose curiousity was piqued by the statement of the Grothendieck-Riemann-Roch theorem has read it themselves. Nevertheless, in case you haven’t, I will proceed to outline the steps of the surprisingly “easy” proof. It is … Continue reading

Posted in Algebraic Geometry, Big Theorems, Cohomology
5 Comments

## Applications of the Schubert Calculus

Ok, this is going to be my last post in enumerative geometry for a while, as I’m kind of drifting away from the subject. However, this one will be fun. We’ve already established the structure of the cohomology ring for … Continue reading

## Pieri and Giambelli Formulas

It’s been a few weeks, but now I’m back and today we’ll talk about the multiplication in the cohomology ring of Grassmannians. Though we won’t talk about the Littlewood-Richardson rule in its full glory, we will howver discuss the special … Continue reading

## The Grothendieck-Riemann-Roch Theorem, Stated

Suppose you have a proper map between smooth (quasi) projective varieties. Then suppose you have a coherent sheaf on . After viewing that sheaf as an element of the Grothendieck Group of coherent sheaves on , there are two things … Continue reading

## Schubert Classes and Cellular Cohomology

So, as of the last post in the series, we defined Schubert cells. We’re going to use them to discuss the Cohomology of the Grassmannian, and to write down an explicit basis. With an eye looking forward, next time, we’ll … Continue reading